If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2+19x+3.55=0
a = 19; b = 19; c = +3.55;
Δ = b2-4ac
Δ = 192-4·19·3.55
Δ = 91.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{91.2}}{2*19}=\frac{-19-\sqrt{91.2}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{91.2}}{2*19}=\frac{-19+\sqrt{91.2}}{38} $
| -8(-x+9)=24 | | 2x-(1/3)=1 | | 2(5x-40)+5=5x | | 2a+12=-10 | | 7b+b=8b | | 3-5(2x+1)-10=0 | | 8x-5=3x+28 | | x-3/(5)-2x+1/(2)=1 | | 1/4(4b-12)=10 | | 3y+70=25 | | -12d-6=-2(d+3)+22 | | 4n=9=37 | | x+2x-30=75 | | a+4=4a+2=3a | | 2a/10=10 | | 4x+3+3x-5=10x+1 | | 4y-20y+4=3y+3 | | 12a=-60 | | 1/4(16z+40=24 | | 7x-28+4x=9x-36-4x | | X+4x-5=3x-3 | | 39=2x-5x | | -12=-0.2k | | 15x+8=9x | | 5=2/q | | -12=0.k | | t+5=4t-4 | | 7z+7=7z | | 11-3x=0 | | 3x+8-4=43 | | (2a×2a)+5=7 | | 58+9x-8=12x+26 |